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SUMMARY

A two-dimensional model for magma ascent in volcanic conduits is presented. The model accounts for
the magma rheology, heat flux to the surrounding country rock, planar and axisymmetric geometries, and
flow in the mushy region by means of a continuum mixture formulation that does not require keeping
track of the liquid–solid interfaces. Numerical experiments for Newtonian and visco-plastic Bingham
rheologies of magmas are presented as functions of the volumetric flow rate at the dyke’s entrance and
wall heat fluxes for both round conduits and fissures. It is shown that, depending on the magma
rheology, dyke geometry, volumetric flow rate and wall heat flux, the magma may solidify along the
original dyke’s walls, thus reducing the available cross-sectional area to the flow, or the original dyke’s
walls may melt. It is also shown that the dyke’s wall temperature may first increase and then decrease,
and that the axial velocity profile exhibits a parabolic shape in the core region and a plug zone near the
dyke’s walls for Bingham rheologies. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Magmas generated in the Earth’s mantle rise to accumulate at the base of the colder brittle
lithosphere. Sometimes the accumulated magma is tapped as the stress builds up and a new
dyke is initiated. Owing to the buoyancy of the magma relative to that of the surrounding
rock, the magma flows upwards and involves the interaction amongst buoyancy, viscosity, heat
transfer, elastic deformation and fracture. For very long dykes, the dominant driving force is
buoyancy, which leads to a viscosity–buoyancy balance, whereas the pressures required to
produce elastic deformation of the walls are much less than the buoyancy forces; therefore,
such dykes should be thought of as flexible conduits that dilate sufficiently to accommodate
the magma flux arriving from below [1,2]. Furthermore, stresses are found to be significant
only in the vicinity of the crack tip.

Volcanic eruptions display a rich variety of phenomena depending on the magma viscosity.
Low viscosity magmas allow for degassing and flow, whereas more viscous magmas may result
in explosive eruptions [3]. However, volcanic eruptions evolve in time in a complex manner,
and the formation of fissures or dykes is the result of elastic and thermal processes in the
surrounding rocks.
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During volcanic eruptions, hot magma traverses a conduit from the magmatic source to
the surface through cold crustal rocks. As a consequence, the magma may solidify. Simi-
larly, in many industrial processes, such as injection moulding and continuous casting, hot
fluid is forced to flow between cold boundaries against which solidification of the fluid can
occur. In both cases, solidification of the fluid constricts the flow, which may become
completely blocked. Since the rate of solidification depends on the convective heat transfer,
and the fluid velocity in turn, depends on the cross-sectional area of the volcanic conduit,
the fluid dynamics of magma during volcanic eruptions is strongly coupled to heat transfer
and results in complex, non-linear, time-dependent phenomena.

Previous studies of volcanic eruptions include those based on heat conduction, and mod-
els that account for fluid motion. Spence and Turcotte [4] decoupled the fluid dynamics
and heat transfer processes, and calculated the heat transfer and the solidification rates as if
the magma were at rest; they, therefore, neglected any effect of advection, i.e. convective
heat transfer. Their predictions indicate that the magma flow ceases in a matter of days.
Bruce and Huppert [3] considered the flow of magma along a fissure at constant overpres-
sure, and assumed laminar flow along an initially planar fissure of constant width, rigid
walls and a single solidification temperature, below which the magma ceases to flow. They
also specified the wall temperature, while the difference between the heat fluxes in the
surrounding rocks and in the flowing magma was set equal to the product of the latent
heat of solidification and the migration velocity of the liquid–solid interface. Their one-di-
mensional thermal model allows for the determination of the flow in the dyke and its
evolution after the initial rock propagation and widening have taken place, and assumes
that the flowing magma, its solid product and the country rock have identical thermal
properties. Their two-dimensional fluid dynamics model is based on a Newtonian, laminar
flow approximation, a parabolic axial velocity profile and a fixed pressure drop, and
accounts for local solidification or melting.

Bruce and Huppert [3] showed that for basaltic magmas, the heat loss to the surrounding
rocks leads to a fissure constricted by the magma solidifying at the walls and may end the
eruption before the magma supply is exhausted. They also showed that, if the continual
supply of heat by the magma exceeds the losses to the surrounding rocks, the initial
solidification is reversed, and the walls of the fissure are progressively melted until the
magma supply diminishes. Other studies include those of Lister [1,2] who investigated the
solidification within a fluid-driven propagating crack embedded in an elastic solid, and
employed a lubrication approximation in the heat and mass transfer equations. Lister [1,2]
assumed that heat transfer in the solid is one-dimensional and interacts with the along-
stream advection and cross-stream diffusion in the liquid. Lister and Dellar [5] considered
the solidification of hot viscous fluids driven by a fixed pressure drop through initially
planar or cylindrical channels embedded in cold rigid walls, and showed that at early times
or far from the magmatic source, the flow starts to solidify and block the channel, whereas
at later times, the supply of new hot fluid starts to melt back the initial chill layer. Their
results indicate that, eventually, either solidification or meltback becomes dominant through
the channel and the flow either ceases or continues until the magmatic source is exhausted
depending on the thermal Peclet number, the Stefan number and a dimensionless solidifica-
tion temperature.

Wylie and Lister [6] considered a pressure-driven viscous flow of an initially hot fluid
through a planar channel with cold walls and a temperature-dependent viscosity, and
showed that if the viscosity variations with temperature are sufficiently large, the relation-
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ship between the pressure drop and the flow rate may be non-monotonic, and multiple
steady states may exist. They also analyzed the linear stability of these flows and developed
a cross-channel-averaged model to study the finite amplitude evolution of disturbances.
Their results indicate that for high viscosities, some flows are unstable to three-dimensional
(fingering) instabilities analogous to those of the Saffman–Taylor type. Helfrich [7] devel-
oped a model of magma flow in dykes and fissures based on averaged equations across the
channel that does not account for the inertia terms in the linear momentum equations, but
which predicts thermo-viscous fingering.

Other models for magma ascent include the two-dimensional one developed by Ramos
and Dobran [8] who assumed that the magma ascends along a central conduit from the
magma storage chamber, exsolving gases such as water vapor and carbon dioxide. Such a
model includes a homogeneous, three-phase flow mixture, visco-elasto plastic effects due
to the gas and vapor bubbles dissolved in the magma, and solidification and melting along
the volcanic conduit, and predicts constriction and widening of the conduit for basaltic
and andesitic magmas respectively, when the heat flux at the conduit’s walls is specified.
Therefore, the results of this model, which uses the same physical properties for both
andesitic and basaltic magmas, are in qualitative agreement with those predicted by the
one-dimensional model of Bruce and Huppert [3]. However, the model of Ramos and
Dobran [8] assumes that there is constant flow of magma at the magmatic source and
does not allow for complete blocking of the volcanic conduit; complete blocking may
occur when the heat losses to the surrounding rocks are larger than the heat supplied by
the flowing magma and the heat generated by viscous dissipation. Moreover, the nearly
absence of non-vertical dykes within the first few kilometers of the surface of most volca-
noes seem to imply that, at least in the superficial regions of volcanoes, three-dimensional
effects are important. Furthermore, the crystal-bearing magma behaves as a non-Newtonian
fluid with a yield stress, i.e. it behaves as a Bingham fluid when the crystal content is
significant.

In this paper, a time-dependent, two-dimensional (planar or axisymmetric), two-phase
continuum mixture [9] model for pressure-driven magma ascent in volcanic conduits is
proposed. The model accounts for both the liquid and the solidified magma, and the mushy
region near the solidification front, by using a continuum mixture formulation, and for the
heat transfer between the magma and the surrounding rocks; it also accounts for Boussi-
nesq effects associated with the dependence of the magma’s density on the temperature and
composition. Although, the model has been formulated to analyze several kinds of Newto-
nian and non-Newtonian fluid rheologies, the results presented here correspond to Newto-
nian and Bingham models of basaltic magmas. The model equations have been formulated
so that they can be applied in the molten, single-phase liquid, the mushy region and the
solidified magma. In order to accommodate the flow in the porous mushy region and the
viscous flow in molten ones, the permeability–porosity relation proposed by Oldenburg and
Spera [10] is employed. This relation makes the permeability small when the solid volumet-
ric fraction is large, and infinity when it is small.

The two-dimensional model presented in this paper differs from previous ones [8] in that
it accounts for non-Newtonian rheologies that depend on the temperature and void frac-
tion, fully couples the heat transfer and fluid dynamics equations, uses a continuum mix-
ture formulation, accounts for the porosity of the mushy region, and considers the heat
transfer in the crustal rocks surrounding the volcanic fissure. However, it does not account
for the elasticity of the crustal rocks surrounding the volcanic conduit.
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2. GOVERNING EQUATIONS

The governing equations for the two-phase magma flow model employed here are based on a
continuum mixture formulation [9] and a binary system with two components, and correspond
to the conservation of mass, linear momentum, energy and mixture components, and may be
written as

(r

(t
+9 · (r7)=0, (1)

(
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where t denotes time; p is the pressure; r, 7 and h denote the mixture density, velocity vector
and enthalpy respectively; k is the mixture thermal conductivity; the subscripts l and s refer to
liquid and solid phases respectively; a is a volumetric fraction in the two-phase mixture; D is
the mass diffusivity; g is the gravitational acceleration; K( is the permeability of the two-phase
mushy region; rf, rfl and rfs denote the solute concentration in the mixture, liquid phase and
solid phase respectively, and therefore, f, fl and fs are the solute mass fractions in the mixture,
liquid phase and solid phase, and fl+ fs=1; t is the stress tensor; and, m̄l is related to the
liquid’s dynamic viscosity. The values of K( , and t and m̄l will be specified later when dealing
with the mushy region and the rheology of the magma.

The last term on the right-hand-side of Equation (2) accounts for the mushy region, which
has been modelled as a porous medium according to Darcy’s law. The mushy region was not
considered in the two-dimensional formulation of Ramos and Dobran [8].

The Boussinesq approximation, i.e.

rg=rlg(1+bT(T−Tref)+bs( f− fref)), (5)

was used in the momentum equation, where bT and bs denote the coefficients of thermal and
solutal expansion respectively, and the subscript ref denotes reference values.

The mixture density may be expressed as

r=asrs+alrl, (6)

whereas, if f stands for 7, f and h,

f=Xsfs+Xlfl, (7)

where

as+al=1, Xs+Xl=1, (8)

f= fsXs+ flXl, (9)

Xi=
riai

r
, i=s, l, (10)

k=asks+alkl, (11)
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K( =G
K0a l

3

(1−al)2 . (12)

X denotes mass fraction, K0 is a constant for the Blake–Kozeny–Carmen equation for
permeability, which corresponds to G=1 and 7s=0.

Both K( and m̄l have been introduced to account for the porosity of the mushy region. Away
from this region in the liquid, G=0 and m̄l is identical to the liquid viscosity ml. Here, the
expressions proposed by Oldenburg and Spera [10] have been used, i.e.

m̄l=ml

1
(1−2Fas)2 , (13)

F=0.5−P, G= (0.5+P)−4, (14)

P=
1
p

arctan(100(as−asc)), (15)

where asc=0.5 is the critical volumetric fraction of solid material at which the balance of
forces in the mushy region changes from being controlled by buoyancy and viscosity to the one
controlled by buoyancy and permeability. Note that, for asBasc, K( is a large value, the mushy
region is nearly a liquid and the last term on the right-hand-side of the momentum equation
is small, i.e. the porosity effect of the mushy region is small. On the other hand, if as\asc, the
last term on the right-hand-side of the momentum equation is important and Darcy’s effects
are accounted for in the mushy region. Note also that, for two-phase systems in which there
is no relative motion between the melt and the solid, the Darcy terms in the momentum
equations are zero.

The enthalpies of the liquid and solid phases are related to the temperature through the
following equations

hl=
& T

0

Cpl dT+L, (16)

hs=
& T

0

Cps dT, (17)

where L is the latent heat of phase change and Cp denotes the specific heat at constant
pressure. Furthermore, it may be easily shown that

C( p=C( psXs+C( plXl, (18)

h=C( pT+XlL, (19)

where C( p denotes an average specific heat, e.g.

C( ps=
1
T
& T

0

Cps(T) dT. (20)

In the above equations, it has been assumed that the melt and solid may coexist at the same
location and have the same temperature. This assumption may be incorrect because phase
changes of multicomponent mixtures occur over a temperature range and, in addition to heat
transfer, mass transfer may result in solute redistribution, microsegregation and macrosegrega-
tion; these phenomena are not considered here. However, the coexistence of melt and solid
allows the treatment of the two-phase flow magma mixture as a whole; therefore, there is no
need to track melt–solid interfaces. Moreover, the continuum mixture theory employed here
assumes local thermodynamic equilibrium so that the solid and liquid concentrations may be
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determined from the phase diagram, i.e. given the mixture mass fraction f and the temperature
T at any point and time, both the mass fractions and the concentrations of the liquid and solid
can be determined as functions of these two variables, which are governed by Equations (3)
and (4) and are non-linearly coupled through Equations (6)–(17); they are also non-linearly
coupled with Equations (1) and (2). This non-linear coupling demands high numerical and
computational efforts if realistic phase diagrams are employed in the numerical simulations.
Although realistic phase diagrams may be handled by the numerical method employed here,
the simplified phase diagram, shown in Figure 1, is considered, which represents a linearization
of that for a binary system with two components but does not account for the solids formed
when molecules of one component are incorporated into the lattice of the other component;
these solids appear between the left skirt of the realistic phase diagram and the left vertical
axis, and between the right skirt of the realistic phase diagram and the right vertical axis. The
linearization of the realistic phase diagram results in a linear relation between T and f, rather
than the non-linear ones that occur when realistic phase diagrams are used.

For the simplified phase diagram of Figure 1, it is easily shown that

Xl=1−
1

1−kp

T−Tliq

T−Tm

, (21)

fl=
f

kp+Xl(1−kp)
, fs=kpfl, (22)

Tliq=Tm+ (Te−Tm)
f
fe

, (23)

where Tliq denotes the liquidus temperature, kp is the equilibrium partition ratio, and the
subscripts e and m refer to the eutectic point and melt respectively.

Figure 1. Idealized phase diagram for binary materials.
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3. NUMERICAL METHOD

The equations presented in the previous section were applied to study the magma ascent in
planar and axisymmetric configurations. These equations were discretized in a staggered grid
by means of a conservative control volume formulation that uses central differences for the
diffusion-like terms and upwind or central differences for the advective ones depending on the
magnitude of the cell or mesh Reynolds numbers. This formulation results in a system of
non-linear, ordinary differential equations for the mass, linear momentum, energy and mixture
components in each computational cell, which were transformed into non-linear algebraic ones
by discretizing the time derivatives by means of the backward (implicit) Euler method. Due to
the implicit character of the discretization and the non-linear coupling between the dependent
variables, an underrelaxation technique and a line-by-line procedure were used to solve the
difference equations for each dependent variable by sweeping the computational domain
axially starting at the conduit’s inlet, as many times as necessary until convergence was
achieved. Once the flow field was found to converge, the time was advanced. Although only
results for steady flows are presented here, the numerical method may be used to analyze
transient phenomena, such as those associated with time-dependent boundary conditions at the
conduit’s entrance; moreover, the use of a time-dependent strategy to solve a steady state
problem increases the diagonal dominance of the discretized equations and facilitates their
numerical solution.

The pressure was determined by combining the continuity and momentum equations, and
solving a Poisson equation for the pressure [11]. This equation accounted for the convective
and diffusive terms, body forces and Darcy’s terms that appear in the momentum equation.
Moreover, for the low Reynolds numbers associated with the magma flows considered in this
paper, it was found that, except in very large computational cells, central differences were used
for the convection terms.

The scalar-dependent variables were defined at the grid points, while the velocity compo-
nents were evaluated at midpoints in order to calculate the convective fluxes accurately. Some
numerical difficulties were initially experienced due to the non-linear coupling between the
mixture composition and temperature through the equilibrium phase diagram and Equations
(3) and (4). These difficulties were solved by first determining the temperature and concentra-
tion fields from the solution of Equations (3), (4) and (19) using the guessed values of the
liquid mass fraction. These values were then used to determine the liquid mass fraction in an
inner loop by using the iterated values of the mixture temperature and concentration as
follows. Instead of determining the liquid mass fraction from the temperature, the temperature
was written as a function of the liquid mass fraction (cf. Equation (21)), i.e.

T=
Tliq−Tm(1−kp)(1−Xl)

1− (1−kp)(1−Xl)
, (24)

and the resulting equation was substituted into Equation (19), which was solved iteratively by
means of a quasi-linearization technique to determine Xl until convergence was achieved. The
resulting liquid mass fraction was again used in Equations (3) and (4), and this procedure was
repeated until convergence of all the flow variables was reached in every computational cell or
volume. Furthermore, at the eutectic point, phase change was assumed to occur isothermally,
i.e. the temperature at any point can decrease below the eutectic point only if the material at
that point has completely solidified [12].

Heat conduction in the rocks surrounding the dyke was analyzed by means of two different
models. The first model solves a two-dimensional heat conduction equation in the rocks
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subject to specified temperature conditions sufficiently far away from the dyke, i.e. a
temperature at infinity, and a heat transfer coefficient, and both the temperature and heat flux
normal to the interface between the solid rocks and the domain that includes the volcanic
conduit are continuous at that interface. In the second model, Equations (1)–(4) were applied
to determine the heat transfer in the surrounding rocks, where the velocity is zero and only the
energy equation is relevant, by treating the surrounding rocks as a fluid of very large dynamic
viscosity. In this second model, the temperature in the solid rocks was determined by
specifying their temperature field sufficiently far away from the dyke, i.e. a temperature at
infinity, and a heat transfer coefficient, and both the temperature and heat flux normal to the
interface between the solid rocks and the domain that includes the volcanic conduit are
continuous at that interface. This second approach allows one to consider the liquid and
solidified magma and the surrounding rocks with the same formulation as a whole, and is of
special relevance when the continuous supply of heat by the flowing magma exceeds the losses
into the surrounding rocks, and the walls of the dyke melt until the magma supply diminishes.

Both models were used to determine the heat flux from/to the surrounding rocks and the
Biot number based on the temperature of the surrounding rocks far away from the dyke, by
assuming that the flowing magma and the surrounding rocks have the same thermal proper-
ties; this assumption, however, is an approximation since the country rocks surrounding a
volcanic conduit vary with depth. The results of these models were in qualitative accord with
each other, and the heat fluxes determined from them were used with the two-dimensional
fluid dynamics equations presented here to determine the magma motion and solidification
when partial blocking of the dyke occurs; therefore, in this paper, the heat fluxes determined
from models that account for heat conduction in the solid rocks that surround a volcanic
conduit were employed to determine the magma ascent and solidification. This approach has
the advantage that only the flow in the original conduit must be resolved, and results in
substantial computational savings. A similar approach was followed for the case that the
dyke’s walls melt; however, in this case, the heat flux conditions were not imposed at the
original dyke’s walls, but at a radial location where there is no melting of these walls.

The specification of either numerically determined or experimental heat fluxes at the dyke’s
walls is more physically plausible than the specification of the temperature at the walls, i.e.
Dirichlet’s boundary conditions, especially when there is magma solidification, because these
fluxes take into account the heat exchanges between the flowing magma and the surrounding
rocks. Moreover, an isothermal (constant temperature) boundary condition at the original
dyke’s walls is not adequate when the magma solidifies because it would not account
appropriately for the heat conduction in the solidified magma at the dyke’s walls. In any event,
the formulation presented here is able to deal with Dirichlet, Neumann and Robin’s boundary
conditions at the original dyke’s walls.

Numerical experiments were also performed with specified heat flux conditions at the dyke’s
walls, such as those proposed by Carrigan et al. [13]. In all the cases considered, however, it
was assumed that, initially, the dyke’s geometry was either a fissure or a round conduit. The
evolution of the flow and solidified magma was followed in time until a stationary state was
reached. Such a stationary state can be easily identified when the heat supplied by the hot
magma is larger than the heat losses to the country rocks for specified entrance conditions.
However, when blocking occurs, the entrance conditions depend on time in such a manner that
the magma flow stops when the dyke is blocked. In order to illustrate both (partial) blocking
and melting of the volcanic conduit, the length of the dyke was specified so that no complete
blocking occurs for the constant entrance conditions considered here, and the boundary
conditions at the dyke’s exit were determined by assuming fully developed laminar flow there
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and accounting for the difference between the inlet flow rate and the solidification rate. The exit
boundary conditions for the temperature and mixture’s mass fraction were determined by
imposing that the gradients of these variables along the streamlines were zero at the exit. These
conditions are approximations to the true ones because when the magma solidifies along the
dyke’s walls, the available cross-sectional area for the flow decreases and the surface area for
the flow and heat transfer diminishes.

In order to accurately resolve the flow field, the grid points were concentrated at the inlet
and near the original dyke’s walls; however, due to the large aspect ratio of a volcanic conduit,
the number of grid points in the axial direction must be very large, otherwise the cells may have
large aspect ratios, which may lead to either numerical instabilities or inaccurate results.
Although the qualitative physical trends of the magma ascent may be predicted by using a grid
of about 100 along and 30 grid points across the volcanic conduit respectively, more accurate
results may be obtained by decreasing the grid spacing in the direction along the conduit. Such
calculations were performed by employing a domain decomposition technique that decomposes
the computational domain into several overlapping subdomains in the axial and transverse
directions and carried out in a distributed computing environment.

Calculations were performed with several grids in order to obtain grid-independent results.
The number of grid points and their locations depended on the conduit’s entrance conditions,
heat flux at the dyke’s walls and fluid rheology. For the volcanic conduits considered here,
which have an aspect ratio of 200, the coarsest grid employed in the calculations consisted of
64×1200 unevenly spaced grid points for half a conduit.

Convergence was reached when the global residuals of the integrated mass, linear momentum
and energy equations were equal to or less than 10−4 times the fluxes of these quantities at the
conduit’s entrance, and when the flow variables at a monitoring point did not change by more
than 10−6 in 250 successive iterations.

4. PRESENTATION OF RESULTS

The two-phase flow model presented in this paper has been applied to determine the ascent of
Newtonian [13] and Bingham or visco-plastic models [14] of magmas in axisymmetric and
planar fissures for different volumetric flow rates V: , and wall heat fluxes, q; w, and some sample
results are presented in this section. Unless otherwise stated, f(0, x, r)=0.36, Tm=1665 K,
Te=1547 K, kp=0.1, rs=rl=2500 kg m−3, Cpl=1000 J kg−1 K−1, L=300000 J kg−1,
fe=0.8, p(0, x, r)=p0=105 bar, T(0, x, r)=T0=1610 K, K0=5.10−11 m2, ms=1030

kg m−1 s−1, Dl=10−8 m2 s−1, kl/rlCpl=7×10−7 m2 s−1, and bs=bT=0. Only results for
volcanic conduits 200 m long, 1 m wide fissures, and round conduits of 1 m in diameter are
presented here, since as stated in the previous section, the length of the dyke was specified
so that no full blocking occurs for the conditions considered in the paper. If full blocking
occurred, the downstream boundary conditions employed here would not be valid, a front-
tracking technique would have to be used to determine and follow the magma front, and the
boundary conditions at the conduit’s entrance would be functions of time. Note that fissures
are channels.

Since the volumetric flow rate at the dyke’s inlet was specified and the length of the volcanic
conduit was selected so that no full blocking of the volcanic conduit occurred, the calculations
were performed in such a manner that there is outflow and the normal derivatives of the
dependent variables at the outflow boundary were set to zero. Calculations were also performed
with time-dependent volumetric flow rates at the inlet, although they are not reported here.
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Figure 2. Axial velocity component (top left), temperature (top right), pressure difference referred to entrance pressure
(bottom left) and liquid mass fraction (bottom right) in a round conduit as functions of the transverse coordinate at
selected locations along the dyke for the Newtonian model of basaltic magmas. (V: =0.2 m3 s−1, q; w=500 J m−2 s−1).

The axial velocity profile at the dyke’s inlet was assumed to be flat because the magma
emerges from a chamber that is much larger than volcanic conduits and, therefore, the axial
velocity profile is not parabolic at the conduit’s entrance.

It must be pointed out that, since the flow of magma in both planar fissures and round
conduits was considered, the transverse co-ordinate measured from the conduit’s centerline is
referred to as either r or y in the following figures.

It should be noted that if the heat supplied by the flowing magma is higher than the heat
losses to the volcanic conduit’s walls, the latter may melt. As a consequence, the available
cross-sectional area for the flow would increase and both the magma’s axial velocity and the
viscous dissipation would decrease. Thereafter, the rate and duration of the volcanic eruption
would be controlled by the decay in the driving pressure difference as well as by the possible
closure of the dyke because of the resulting subsidence of the volcanic edifice. On the other
hand, if the heat supply by the flowing magma is smaller than the heat losses to the conduit’s
walls, the magma will solidify along the walls, thus decreasing the available cross-sectional area
and, for a constant pressure drop along the volcanic conduit, the magma velocity and the
viscous dissipation would increase. This increase in viscous dissipation may cause high
temperatures locally, which may cause melting of the chill layer.

For the sake of brevity, the units used throughout are those of the MKS system, and the
temperature is measured in Kelvin.

4.1. Newtonian models of basaltic magmas

For basaltic magmas, the liquid viscosity in MKS units is [13]
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ml=10−6 exp
�26 170

T
�

, (25)

and these magmas were assumed to be Newtonian, i.e.

t=2mlD, D=
1
2

(97+ (97)T), (26)

where D is the strain or deformation rate tensor, and the superscript T denotes transpose.
Some sample results for these magmas are presented in Figure 2 for round conduits, a
(constant) heat flux at the conduit wall,q; w, of 500 and V: =0.2, at selected axial locations along
the conduit. It should be noted that in order to illustrate in a clear manner the more important
features of magma flows, only results in a small fraction of the grid points employed in the
calculations are shown in the following figures.

Figure 2 indicates that the flat axial velocity profile at the dyke’s entrance becomes a
parabolic one in the core region a short distance downstream, whose maximum value increases
along the conduit, which becomes constricted on account of the magma solidification at the
dyke’s walls.

Figure 2 also shows that the magma temperature is identical to that of the entrance in the
core flow, and drops almost linearly to the dyke’s temperature, which varies along the dyke.

Figure 3. Axial velocity component (top left), radial velocity component (top right), temperature (bottom left) and
liquid mass fraction (bottom right) in a round conduit as functions of the transverse coordinate at selected locations

along the dyke for the Newtonian model of basaltic magmas (V: =0.2 m3 s−1, q; w=500 J m−2 s−1).
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Figure 4. Isotherms (top left), isobars (top right), isocontours of mixture mass fraction (bottom left) and isocontours
of liquid mass fraction (bottom right) in a round conduit as functions of the transverse and axial co-ordinates for the

Newtonian model of basaltic magmas. (V: =0.2 m3 s−1, q; w=500 J m−2 s−1).

The liquid mass fraction illustrated in Figure 2 also indicates the solidification of the magma
along the conduit’s walls and the constriction of the cross-sectional area, while the ratio of the
difference between the entrance pressure and the local one to the entrance pressure almost
varies linearly in accordance with a linear or hydrostatic pressure distribution, except near the
entrance due to the transition of the velocity profile from a flat to a parabolic profile. These
trends are more clearly illustrated in Figure 3, which corresponds to x=100 m, and indicates
that the radial velocity component is very small.

Figure 3 indicates that, at x=100 m, the axial velocity profile is almost parabolic in the
flowing magma and zero in the solidified layer close to the conduit’s wall, and that the flowing
magma has an available cross-sectional area that corresponds to a circle whose radius is about
0.34 m. This implies that, if the amount of solidified magma is neglected, the maximum axial
velocity at this axial location corresponding to mass conservation is about 1.10 m s−1, i.e. it
is about four times larger than the inlet velocity. This result is consistent with that of Figure
3 and illustrates the axial flow acceleration due to the flow constriction owing to the magma
solidification. Moreover, mass conservation was satisfied at each conduit’s cross-section.

The isocontours of some flow variables are illustrated in Figure 4, which indicates that the
magma solidification occurs from the dyke’s entrance, the pressure distribution is uniform at
each cross-section along the volcanic conduit, and a rapid solidification occurs near the
entrance as indicated in the liquid mass fraction isocontours.
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Similar trends to those shown in Figures 2–4 have also been observed for smaller volumetric
flow rates at the dyke’s entrance and higher heat fluxes at the dyke’s walls except that the
thickness of the solidified layer increases as the volumetric flow rate is decreased and/or the
heat flux to the walls is increased.

For V: =0.3 and q; w=500, and V: =0.2 and q; w=200, the dyke’s wall temperature is higher
than for V: =0.2 and q; w=500 due to the fact that the heat losses to the surrounding rocks are
smaller than the heat supplied by the flowing magma and the heat generated by viscous
dissipation as shown in Figure 5, which clearly indicates that the wall temperature increases
downstream from the entrance; this temperature increase may cause melting of the surround-
ing rocks. Figure 5 also shows that the liquid mass fraction is equal to one along the conduit’s
original wall, i.e. there is no magma solidification along the conduit’s walls, and that the axial
velocity profile undergoes a rapid transition from a flat shape at the conduit’s entrance to a
parabolic one downstream. However, a higher heat flux at the conduit’s wall results in
solidified magma; for example, for V: =0.3, solidified magma at the dyke’s wall was observed
for q; w]1500.

Figure 6 shows the cross-sectional profiles of some of the variables illustrated in Figure 5 at
x=100 m, and indicates that the axial velocity profile is a parabola at x=100 m, the radial
velocity component is very small, and the temperature profile shows a relative maximum near
the wall. The isocontours presented in Figure 7 illustrate that the pressure is uniform at each
cross-section along the volcanic conduit, and that temperature of the conduit’s wall increases
immediately from the entrance.

Similar trends to those shown in Figures 2–7 have also been observed for fissures, except
that melting of the dyke’s wall was observed for V: =0.2 and q; w=500. Magma solidification

Figure 5. Axial velocity component (top left), temperature (top right), pressure difference referred to entrance pressure
(bottom left) and liquid mass fraction (bottom right) in a round conduit as functions of the transverse co-ordinate at
selected locations along the dyke for the Newtonian model of basaltic magmas (V: =0.2 m3 s−1, q; w=200 J m−2 s−1).
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Figure 6. Axial velocity component (top left), radial velocity component (top right), temperature (bottom left) and
liquid mass fraction (bottom right) in a round conduit as functions of the transverse co-ordinate at x=100 m for the

Newtonian model of basaltic magmas (V: =0.2 m3 s−1, q; w=200 J m−2 s−1).

was found to occur for the same flow rate and higher heat fluxes, and for the same heat flux
and lower volumetric flow rates. The temperature of the dyke’s wall was also observed to
increase for fissures as the volumetric flow rate was increased and/or the heat flux to the
conduit’s walls was decreased.

A summary of the conduit’s wall temperature is presented in Figure 8 for both round
conduits and fissures, several wall heat fluxes and entrance volumetric flow rates. This figure
clearly illustrates that the magma solidifies along the conduit except for (V: , q; w)= (0.3, 500) for
round conduits, and (0.2, 500) and (0.3, 500) for fissures. Figure 8 also shows that melting back
of the dyke followed by magma solidification occurs for (V: , q; w)= (0.3, 1500) for fissures. The
results presented in Figure 8 and others not shown here indicate the wall temperature is a
function of both the heat flux, i.e. the temperature of the surrounding rocks far away from the
dyke or the Biot number, and the volumetric flow rate. In addition, the distance required for
the solidification of the magma to be noticeable decreases as the wall heat flux is increased and
as the volumetric flow rate is decreased.

The results presented here are in qualitative agreement with the predictions of the simplified
model proposed by Bruce and Huppert [3] for basaltic magmas.
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4.2. Bingham models of basaltic magmas

For magmas that exhibit a Bingham rheology, the model proposed by Pinkerton and
Stevenson [l4] was employed. This model was developed for magmas at subliquidus tempera-
tures and may be written as

t=2
�

mm+
ty

�g; �
�

D, �g; �\ �g; c�, (27)

t=2mrD, �g; �5 �g; c�, (28)

where

�g; �=�1
2

D : D
�1/2

, (29)

mm=m�+
m0−m�

1+ �g; �(m0−m�)/B
, (30)

m0=mL
� as,max

as,max−as

�2.5

, (31)

m�=mL exp
��

2.5+
� as

as,max−as

�0.48� as

as,max

�
, (32)

Figure 7. Isotherms (top left), isobars (top right), isocontours of mixture mass fraction (bottom left) and isocontours
of liquid mass fraction (bottom right) in a round conduit as functions of the transverse and axial co-ordinates for the

Newtonian model of basaltic magmas (V: =0.2 m3 s−1, q; w=200 J m−2 s−1).
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Figure 8. Wall temperature (°C) for round conduits (top) and fissures (bottom) along the dyke for the Newtonian
model of magmas for an inlet temperature of 1337°C; (V: , q; w)= (0.2, 500), �; (0.2, 1500), + ; (0.2, 3000), × ; (0.1, 500),
�; (0.1, 1500), �; (0.1, 3000), dotted line; (0.3, 500), solid line; (0.3, 1500), dashed line; (0.3, 3000), dashed-dotted line).

ty=1.26rlg
� dp

as,max−as

�� as,max

1−as,max

�2 1
s2j1.5 , (33)

B=0.066ty
� a s,max

2

as,max−as

�� mL
2

rltydp
2

�0.21

, (34)

as,max=0.634, j=0.34, s=1.88, mL=50, (35)

the subscripts y, c and max denote yield, critical and maximum respectively, and the reference
viscosity mr is at least 1000mm.

g; c can be calculated by equating the stresses from Equations (27) and (28) and solving the
resulting quadratic equation, which depends on as, which in turn, depends on the solution of
Equations (1)–(4).

The value of dp in Equations (34) and (35) is related to the solid volumetric fraction as
follows. If N is the number of particles per unit volume and these are assumed to be spherical,
then

dp=
�6as

pN
�1/3

. (36)

Therefore, this model accounts for visco-plastic effects since it exhibits Newtonian and plastic
or Bingham characteristics through mm and the yield stress respectively. However, the Bingham
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model of basaltic magmas employed here differs from those usually employed in the literature
[15], e.g.

t̂=hg; , t̂]t0, (37)

g; =0, t̂Bt0, (38)

where

g; =�1
2

D : D
�1/2

, t̂=
�1

2
t : t

�1/2

, (39)

h=m0+
t̂

g; , (40)

since there is always a Newtonian contribution to the stress tensor through mm and mr in
Equations (27) and (28) respectively. As a consequence, the model employed here, which is
based on experimental data, does not suffer from the limitations of the standard one at the
centerline where the shear strain rate is zero and there is a problem with the shear stress. It
must be pointed out, however, that the limitations of the standard model at the centerline can
be avoided by introducing a limiting value for the strain rate in an analogous manner to
Equation (28).

As indicated above, the rheology of visco-plastic magmas in Pinkerton and Stevenson’s
model [14] depends on two factors N and mr. For mr=108, no results could be obtained for
heat fluxes ranging from 50 to 3000, and N ranging from 107 to 1011 for both round conduits
and fissures. For mr=106, results could be obtained for a wall heat flux of 50 and N ranging
from 107 to 109 for both fissures and round conduits. In these cases, however, the wall
temperature was observed to reach a value higher than 2600 K at x=100 m, the pressure was
not uniform at each cross-section, the axial velocity profile was characterized by a parabola in
the core region and a plug flow profile with a non-zero value near the wall, and the wall
temperature was found to be nearly equal to that at the entrance for x560 m and then it
increased downstream. Moreover, the axial velocity profile underwent large variations along
the conduit’s axis. Furthermore, for mr=106 and N]1010, the wall temperature was found to
reach the unrealistic value of more than 4000 K. These results indicate that for the same value
of mr, the higher the value of N the higher the wall temperature.

Parametric studies were also performed for mr=104, 1045N5106, 505q; w53000, 0.15
V: 50.2, and round and planar volcanic conduits. The results of these studies, which are not
shown here, indicate that the wall temperature at x=200 m was at most 10° higher than the
entrance’s temperature, the temperature and the liquid mass fraction profiles were almost
uniform except for a small gradient near the conduit’s wall, and the axial velocity profile was
almost flat with a steep gradient near the walls. Similar trends to the ones just described were
also found for mr=105 and 107, 1045N5106, 505q; w53000, 0.15V: 50.2, and round
volcanic conduits and fissures. Moreover, the parametric studies performed for different
volumetric flow rates and wall heat fluxes including those experimentally determined by
Carrigan et al. [13] for round conduits and fissures indicate that Pinkerton and Stevenson’s
Bingham rheology is extremely sensitive to N or dp. This is not surprising because the
characteristics of their rheological model were determined by melting magmas collected in
volcanic sites and performing the corresponding rheological measurements on them, and the
rheological characteristics of the remelted magmas may be different from those of the original
ones.
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For mr=105, (V: , q; w)= (0.1, 500) and round conduits, the axial velocity profile underwent a
rapid transition from its flat shape to a parabolic one, followed by a further transition to a
parabolic profile in the core and a plug flow near the wall. The velocity of the plug flow and
the dyke’s wall temperature increased downstream, the liquid mass fraction at the wall was
one, the distance required for the second flow transition was not a monotone function of N,
and the wall temperature decreased as N decreased from 109 to 107. The highest temperature
was observed near the wall for N=109 and was about 1800 K. Furthermore, for N=107, the
second flow transition to a parabolic flat profile occurred at about x=100 m, whereas for
N=109 and 108, it occurred at x=40 and 20 m respectively. Similar trends were also observed
for the same values of N in fissures, except that the wall temperature was higher in the latter.

Figure 9 shows some sample results for mr=105, N=108, (V: , q; w)= (0.1, 500) and round
conduits, clearly exhibits the two flow transitions described above, and illustrates that the wall
temperature increases along the dyke. As indicated previously, the wall temperature increases
as N is increased. The cross-sectional profiles of Figure 9 at x=100 m are presented in Figure
10, which shows that the magma temperature increases near the wall, the small value of the
radial velocity component, and the plug flow near the wall, while Figure 11 shows that it takes
a distance of about 25 m for the wall’s temperature to rise. Similar trends to those shown in
Figures 9–11 have been observed in fissures, except that the wall temperature is higher in the
latter.

Based on the above results and further numerical experiments not reported here, calculations
were performed for mr=104 and 105 and N ranging from 107 to 109 as function of the
volumetric flow rate and the heat flux. Some sample results are presented in Figures 12–14,
which correspond to (V: , q; w)= (0.2, 100), and N=109, 108 and 107 respectively. These figures

Figure 9. Axial velocity component (top left), temperature (top right), pressure difference referred to entrance pressure
(bottom left) and liquid mass fraction (bottom right) in a round conduit as functions of the transverse co-ordinate at
selected locations along the dyke for the Bingham’s model of basaltic magmas (V: =0.1 m3 s−1, q; w=500 J m−2 s−1,

mr=105 kg m−1 s−1, N=108).
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Figure 10. Axial velocity component (top left), radial velocity component (top right), temperature (bottom left) and
liquid mass fraction (bottom right) in a round conduit as functions of the transverse coordinate at x=100 m for the

Bingham’s model of basaltic magmas (V: =0.1 m3 s−1, q; w=500 J m−2 s−1, mr=105 kg m−1 s−1, N=108).

clearly illustrate that the temperature of the conduit’s wall increases as N is increased, and the
transition of the flow from a flat profile to a parabolic one and then to a parabolic one in the
core flow and a plug flow near the dyke. The increase in the temperature of the original
conduit’s walls may cause melting of the surrounding rocks and, therefore, an increase in the
cross-sectional area with the consequent decrease in axial velocity and viscous dissipation until
either the magma supply decreases or the volcanic edifice collapses owing to its subsidence.

Figures 12–14 also indicate that the axial velocity of the plug flow increases downstream
and that, initially, the wall temperature slightly drops below its inlet value. The distance
required for melting of the dyke’s walls to occur increases as N is decreased. Similar trends to
those exhibited in Figures 12–14 have also been observed for fissures except that the wall
temperature is higher in the latter.

Figures 15 and 16 show the wall temperature as a function of the volumetric flow rate, heat
flux and N for round conduits and fissures respectively, and indicates that the wall temperature
of fissures is higher than that of round conduits, and the wall temperature decreases as N is
decreased and the heat flux is increased. Figures 15 and 16 also indicate that the wall
temperature starts rising after a distance from the entrance which increases as N is decreased,
and that the trends of the wall temperature are the same for round conduits and fissures.

The results presented in this section for both Newtonian and Bingham rheologies indicate
that when the heat supplied by the flowing magma is smaller than the heat losses to the
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surrounding rocks, there is solidification of magma along the conduit’s walls for Newtonian
rheologies. However, even for (V: , q; w, N)= (0.1, 3000, 107) and round conduits, no magma was
found to solidify for the visco-plastic Bingham model employed here, whereas for the same
volumetric flow rate and heat flux, the Newtonian model predicted magma solidification. This
difference between the Newtonian and Bingham models of basaltic magmas is associated with
Equations (27) and (28) which, as stated above, include Newtonian and/or visco-plastic
contributions, and indicates that the experimentally determined rheology of the Bingham
model [14] employed here may not be accurate to predict the ascent of magmas in volcanic
conduits because one should expect magma solidification for small volumetric heat fluxes
and/or large heat fluxes at the conduit’s walls.

Both the numerical results presented here and the simulations of andesitic magmas per-
formed by Ramos and Dobran [8] strongly suggest that simpler models of pressure driven
magma ascent in volcanic conduits may be developed since the radial velocity component is
small, volcanic conduits are longer than their diameters, the Reynolds number is small, and
axial diffusion is smaller than the radial one. These simpler models may be obtained by
employing a long-wave, lubrication or slender approximation similar to that of Wylie and
Lister [6], a viscous scaling for the pressure, and perturbation techniques with the slenderness
ratio as the perturbation parameter. To leading order in the perturbation parameter, it can be

Figure 11. Isotherms (top left), isobars (top right), isocontours of mixture mass fraction (bottom left) and isocontours
of liquid mass fraction (bottom right) in a round conduit as functions of the transverse and axial co-ordinates for the

Bingham’s model of magmas (V: =0.1 m3 s−1, q; w=500 J m−2 s−1, mr=105 kg m−1 s−1, N=108).
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Figure 12. Axial velocity component (top left), temperature (top right), pressure difference referred to entrance
pressure (bottom left) and liquid mass fraction (bottom right) in a round conduit as functions of the transverse
co-ordinate at selected locations along the dyke for the Bingham’s model of basaltic magmas (V: =0.2 m3 s−1,

q; w=500 J m−2 s−1, mr=105 kg m−1 s−1, N=109).

Figure 13. Axial velocity component (top left), temperature (top right), pressure difference referred to entrance
pressure (bottom left) and liquid mass fraction (bottom right) in a round conduit as functions of the transverse
co-ordinate at selected locations along the dyke for the Bingham’s model of basaltic magmas (V: =0.2 m3 s−1,

q; w=500 J m−2 s−1, mr=105 kg m−1 s−1, N=108).
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Figure 14. Axial velocity component (top left), temperature (top right), pressure difference referred to entrance
pressure (bottom left) and liquid mass fraction (bottom right) in a round conduit as functions of the transverse
co-ordinate at selected locations along the dyke for the Bingham’s model of basaltic magmas (V: =0.2 m3 s−1,

q; w=100 J m−2 s−1, mr=105 kg m−1 s−1, N=107).

easily seen that the pressure is a linear function of the co-ordinate along the volcanic conduit
and the axial velocity component is only a function of the radial co-ordinate, although it
depends in a strong non-linear fashion on the temperature through the magma’s dynamic
viscosity.

5. CONCLUSIONS

The effects of the magma rheology, volumetric flow rate, heat flux and dyke geometry on
magma ascent in volcanic conduits have been investigated numerically by means of a
two-dimensional, continuum mixture formulation, which accounts for Boussinesq effects,
porous flow in mushy regions and magma solidification, but which does not require keeping
track of melt–solid interfaces. It has been shown that for a constant volumetric flow rate at
the dyke’s entrance, the magma may either solidify along the dyke and constrict the flow or
melt the surrounding rocks, thus widening the original dyke’s cross-sectional area depending
on the heat fluxes to the surrounding rocks and the heat supplied by the flowing magma. In
both cases, it has been found that either blocking or melting of volcanic conduits depends on
the volumetric flow rate, heat flux, dyke geometry and magma rheology.

For Newtonian models of magmas and the volumetric and heat fluxes considered in this
paper, melting of the surrounding rocks was observed for the experimentally determined
(estimated) heat fluxes at the volcanic conduit’s walls. Magma solidification along the dyke for
Newtonian models of magmas, however, was found to occur at high heat fluxes.
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A visco-plastic Bingham model of magmas, which includes the effects of the solid particles
through the solid void fraction on the yield stresses, has also been used. This model was found
to depend critically on the number of solid particles per unit volume and a reference viscosity.
Larger reference viscosities were found to yield no convergence of the numerical algorithm,
whereas for lower ones, it was found that the wall temperature decreases as the number of
solid particles per unit volume decreases. This Bingham model also shows that the axial
velocity profile undergoes a first transition from a flat shape to a parabolic one, and then a
second transition to a parabolic profile in the core flow and a plug flow near the dyke. The
velocity of the plug flow was found to increase along the dyke. However, it was found that the
experimentally determined rheology employed here may not be adequate for predicting the
ascent of magmas in volcanic conduits because it is unable to predict magma solidification
even for small volumetric flow rates and/or large heat fluxes to the surrounding rocks.

In addition to melting of the surrounding rocks and magma solidification along the dyke, it
was found that the magma may first rise, increasing the surrounding rocks’ temperature and
then solidify depending on the volumetric flow rate, magma rheology, dyke geometry and heat
flux. Therefore, in order to accurately predict the ascent of magmas in volcanic conduits, it is

Figure 15. Wall temperature (°C) for round conduits along the dyke for the Bingham’s model of magmas for an inlet
temperature of 1337°C; (Top: (V: , q; w, N)= (0.2, 50, 109), �; (0.2, 50, 108), + ; (0.2, 50, 107), × ; (0.2, 100, 109), �;
(0.2, 50, 108), �; (0.2, 50, 107), dotted line; (0.2, 250, 109), solid line; (0.2, 250, 108), dashed line; (0.2, 250, 107),
dashed-dotted line. Bottom: (V: , q; w, N)= (0.1, 500, 109), �; (0.1, 500, 108), + ; (0.1, 500, 107), × ; (0.1, 1500, 109), �;
(0.1, 1500, 108), �; (0.1, 1500, 107), dotted line; (0.1, 3000, 109), solid line; (0.1, 3000, 108), dashed line; (0.1, 3000, 107):

dashed-dotted line).
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Figure 16. Wall temperature (°C) for fissures along the dyke for the Bingham’s model of magmas for an inlet
temperature of 1337°C; (Top: (V: , q; w, N)= (0.2, 50, 109), �; (0.2, 50, 108), + ; (0.2, 50, 107), × ; (0.2, 100, 109), �;
(0.2, 50, 108), �; (0.2, 50, 107), dotted line; (0.2, 250, 109), solid line; (0.2, 250, 108), dashed line; (0.2, 250, 107),
dashed-dotted line. Bottom: (V: , q; w, N)= (0.1, 500, 109), �; (0.1, 500, 108), + ; (0.1, 500, 107), × ; (0.1, 1500, 109), �;
(0.1, 1500, 108), �; (0.1, 1500, 107), dotted line; (0.1, 3000, 109), solid line; (0.1, 3000, 108), dashed line; (0.1, 3000, 107),

dashed-dotted line).

of paramount importance to have an adequate rheological model and a good understanding of
the heat exchanges with the surrounding rocks.

Finally, it must be noted that the results presented here indicate that, regardless of the
magma rheology, the axial velocity component of the magma in the core region can be
represented accurately by a parabolic profile, and since the transverse velocity component is
much smaller than the axial one while the pressure is almost the hydrostatic one, simpler
models of magma ascent in volcanic conduits may be easily derived by using these flow
characteristics and accounting in a more detailed manner for the heat transfer from/to the
surrounding rocks.
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